libfrontg8

Release 0.1.0

October 18, 2016

Contents

1 User documentation (C API) 3
1.1 The CAPIL e e 3

libfrontg8, Release 0.1.0

libfrontg8 is a new foundation for frontg8, the security-centered, opensource communication system. It provides a
common infrastructure for server and client implementations and allows you to integrate frontg8 in your own project.

To maximize interoperability, libfrontg8 is designed to expose a straight-forward C APIL This allows you to use
libfrontg8 from the language of your choice. Currently we officially support the bare C API and a C++ frontend
for the library. One of our future goals is to provide language bindings for Python, Java and Rust. If you would like to
help out, you can reach us via Github.

Contents 1

https://frontg8.ch
https://github.com/frontg8

libfrontg8, Release 0.1.0

2 Contents

CHAPTER 1

User documentation (C API)

1.1 The C API

1.1.1 Error processing functions

#include <frontg8/error.h>

Typedefs

typedef £g8_error_t
The opaque error pointer type.

This type carries generic error information. The library uses this type throughout the whole codebase to commu-
nicate error conditions back to the your code. There is no way to construct objects of this type except indirectly
by forcefully causing a function to reach an error condition. See fg8_error_message and fg8_error_destroy for
information on how to make use of this type.

Author Felix Morgner
Since 0.1.0

Functions

char const* £g8_error_message (fg8_error_t const error)
Retrieve the error message contained in an fg8_error_t object.

Being an opaque type, it is not possible to directly read the content of the error object. You can use this function
to extract the error message contained in an fg8_error_t object. Calling this function on a NULL object will
return a NULL pointer. The string (char const «) returned by the function is a standard NULL terminated
C string. The memory of the string is owned by the error object.

Example

#include <frontg8/error.h>
#include <stdio.h>
// other includes ...

int main ()

{

[S S T

libfrontg8, Release 0.1.0

7 fg8_error_t error;
9 // Do something that might produce an error

11 if (error)

12 {

13 printf ("ERROR: %s", fg8_error_message (error));
14 }

16 // Do the rest
17 }

Return A pointer to the message contained in the error or NULL if there was no error. The memory of the
message is managed by the error object and the user code MUST NEVER call free () or equivalent on

1t.
Author Felix Morgner
Since 0.1.0
Parameters

* error - The error object whose message should be retrieved. Might be NULL.

void £g8_error_destroy (fg8_error_t const error)

Destroy an error object.

A lot of the libraries functions take a pointer to fg8_error_t (see fg8_protocol_message_encrypted_create for an
example) in order to be able to communicate error conditions back to the calling code. As long as you reuse the
same error object, you don’t need to worry about memory management, the library will take care of that for you.
There are some situations, where YOU need to take care of the error object. For example, if you do not want
to reuse the same error object or at the end of the relevant scope, you must use fg8_error_destroy to cleanly
destroy the error object and release its memory. Note that you MUST NEVER call free () or equivalent on

an error object.

Example

1 #include <frontg8/error.h>
2 #include <stdio.h>
3 // other includes

5 int main ()
6 {
7 fg8_error_t error;

9 // Do something that stores an error in error

11 fg8_error_destroy(error);

12 }

Author Felix Morgner
Since 0.1.0
Warning Calling destroy multiple times on the same error object will result in undefined behaviour

All pointers to the message formerly contained in the error object may point to invalid memory after
destruction.

Parameters

Chapter 1. User documentation (C API)

libfrontg8, Release 0.1.0

* error - The error object to be destroyed

1.1.2 Protocol fuctions

Encrypted messages
#include <frontg8/protocol/message/encrypted.h>
Typedefs

typedef £g8_protocol_message_encrypted_t
typedef £g8_protocol_message_encrypted _const_t

Functions

fg8_protocol_message_encrypted_t £g8_protocol_message_encrypted_create (char const
*const con-
tent, size_t
const length,

fe8_error_t
*const error)
Create an encrypted message.
Author Felix Morgner
Since 0.1.0

Return An encrypted message if construction succeedes. Otherwise, NULL is returned and if error is not
NULL, it will be set to a new error object.

Parameters
* content - The content of new message. Might be NULL.

e length - The length of the data pointed to by content. Passing in 0 will result in an empty
message.

e error - A pointer to an error object. Might be NULL.
Jg8_protocol_message_encrypted_t £g8_protocol_message_encrypted_copy (f¢S_protocol_message_encrypted_const_t ot}
fe8_error_t
) o *const error)

Create an encrypted message by copying an existing one.
Author Felix Morgner
Since 0.1.0
Note Passing an NULL object for other will result in an error.

Return An encrypted message if copy construction succeedes. Otherwise, NULL is returned and if error is
not NULL, it will be set to a new error object.

Parameters

e other - The source of the copy.

1.1. The C API 5

libfrontg8, Release 0.1.0

* error - A pointer to an error object. Might be NULL.

void £g8_protocol_message_encrypted_destroy (fg8_protocol_message_encrypted_t const in-

stance)
Cleanup and destroy an encrypted message.

Author Felix Morgner
Since 0.1.0

Note You must use this function to cleanup messages you no longer need. Accessing an encrypted message
object after destruction might lead to undefined behaviour.

Parameters
* instance - An existing encrypted message. Might be NULL.
fe8_protocol_message_encrypted_t £g8_protocol_message_ encrypted_deserialize (char const
*const data,
size_t length,
fe8_error_t

*const er-

ror)
Create an encrypted message from serialized data.

Author Felix Morgner
Since 0.1.0
Note Passing in NULL for content will result in a default constructed encrypted message being returned.

Return An encrypted message if deserialization succeedes. Otherwise, NULL is returned and if error is not
NULL, it will be set to a new error object.

Parameters
* data - A string pointing to serialized data. Might be NULL.
* length - The length of the data pointed to by data
* error - A pointer to an error object. Might be NULL.
char* £g8_protocol_message_encrypted_serialize (fg8_protocol_message_encrypted_const_t

const instance, size_t * length, fg8_error_t

o) *const error)
Serialize an encrypted message into a byte array.

Author Felix Morgner
Since 0.1.0

Return A pointer to the first byte of the serialized data. The memory is owned by the client and must be freed
appropriately. If serialization fails, a NULL pointer is returned and error is set accordingly if a non NULL
value was passed in.

Parameters
e instance - The message to be serialized. Must not be NULL.

* length - A pointer to a variable in which the size of the returned array will be stored. Might be
NULL.

* error - A pointer to an error object. Might be NULL.

6 Chapter 1. User documentation (C API)

libfrontg8, Release 0.1.0

char const* £g8_protocol_message_encrypted_get_content (fg8_protocol_message_encrypted_const_t
const instance, size_t
*const length, fe8_error_t

*const error)
Get the content of an encrypted message.

Author Felix Morgner
Since 0.1.0

Return A string containing the content data of instance or NULL if the encrypted message has no content
(e.g is default-initialized). The memory is managed by the instance and must not be freed. If error is
not NULL and an error occurs, it will be set to point to a new error object.

Parameters
* instance - An encrypted message. Must not be NULL.

* length - A pointer to a variable in which the size of the returned array will be stored. Might be
NULL.

* error - A pointer to an error object. Might be NULL.
void £g8_protocol_message_encrypted_set_content (fg8_protocol_message_encrypted_t
const instance, char const *const con-

tent, size_t const length, fg8_error_t

*const error)
Set the content of an encrypted message.

Author Felix Morgner
Since 0.1.0

Note If an error occurs, instance will remain unchanged and error will be set accordingly if a non NULL
value was passed in

Parameters
* instance - An encrypted message. Must not be NULL.
* content - The new content of the message. Passing in NULL will clear the message content.
* length - The length of the data pointed to by content.
* error - A pointer to an error object. Might be NULL.

bool £g8_protocol_message_encrypted is_valid (/g8 _protocol_message_encrypted_const_t

const instance)
Check if an encrypted message is in a valid state (e.g has content)

Author Felix Morgner

Since 0.1.0

Return true if the message is valid, false otherwise
Parameters

e instance - An encrypted message.

1.1. The C API 7

libfrontg8, Release 0.1.0

bool £g8_protocol_message_encrypted_compare_equal (fg8_protocol_message_encrypted_const_t
const left,
fg8_protocol_message_encrypted_const_t

const right)
Compare two encrypted messages for equality.

Author Felix Morgner
Since 0.1.0
Note Two messages are considered equal iff they have the same content. NULL values always compare unequal.
Return true if the messages are equal, false otherwise
Parameters
* left - An encrypted message (“left-hand side”)

* right - An encrypted message (“right-hand side”)

8 Chapter 1. User documentation (C API)

Index

F

fg8_error_destroy (C function), 4
fg8_error_message (C function), 3
fg8_protocol_message_encrypted_compare_equal (e
function), 7
fg8_protocol_message_encrypted_copy (C function), 5
fg8_protocol_message_encrypted_create (C function), 5
fg8_protocol_message_encrypted_deserialize (C func-
tion), 6
fg8_protocol_message_encrypted_destroy (C function), 6
fg8_protocol_message_encrypted_get_content (C func-
tion), 7
fg8_protocol_message_encrypted_is_valid (C function),
7
fg8_protocol_message_encrypted_serialize (C function),
6
fg8_protocol_message_encrypted_set_content (C func-
tion), 7

	User documentation (C API)
	The C API

